55 research outputs found

    Stability Analysis of Continuous-Time Switched Systems with a Random Switching Signal

    Get PDF
    This paper is concerned with the stability analysis of continuous-time switched systems with a random switching signal. The switching signal manifests its characteristics with that the dwell time in each subsystem consists of a fixed part and a random part. The stochastic stability of such switched systems is studied using a Lyapunov approach. A necessary and sufficient condition is established in terms of linear matrix inequalities. The effect of the random switching signal on system stability is illustrated by a numerical example and the results coincide with our intuition.Comment: 6 pages, 6 figures, accepted by IEEE-TA

    Optimal Estimator Design and Properties Analysis for Interconnected Systems with Asymmetric Information Structure

    Full text link
    This paper studies the optimal state estimation problem for interconnected systems. Each subsystem can obtain its own measurement in real time, while, the measurements transmitted between the subsystems suffer from random delay. The optimal estimator is analytically designed for minimizing the conditional error covariance. The boundedness of the expected error covariance (EEC) is analyzed. In particular, a new condition that is easy to verify is established for the boundedness of EEC. Further, the properties of EEC with respect to the delay probability are studied. We found that there exists a critical probability such that the EEC is bounded if the delay probability is below the critical probability. Also, a lower and upper bound of the critical probability is derived. Finally, the proposed results are applied to a power system, and the effectiveness of the designed methods is illustrated by simulations

    H<sub>2</sub> model reduction for diffusively coupled second-order networks by convex-optimization

    Get PDF
    This paper provides an H2H_2 optimal scheme for reducing diffusively coupled second-order systems evolving over undirected networks. The aim is to find a reduced-order model that not only approximates the input-output mapping of the original system but also preserves crucial structures, such as the second-order form, asymptotically stability, and diffusive couplings. To this end, an H2H_2 optimal approach based on a convex relaxation is implemented to reduce the dimension, yielding a lower order asymptotically stable approximation of the original second-order network system. Then, a novel graph reconstruction approach is employed to convert the obtained model to a reduced system that is interpretable as an undirected diffusively coupled network. Finally, the effectiveness of the proposed method is illustrated via a large-scale networked mass-spring-damper system

    Motion Control of Two Mobile Robots under Allowable Collisions

    Full text link
    This letter investigates the motion control problem of two mobile robots under allowable collisions. Here, the allowable collisions mean that the collisions do not damage the mobile robots. The occurrence of the collisions is discussed and the effects of the collisions on the mobile robots are analyzed to develop a hybrid model of each mobile robot under allowable collisions. Based on the effects of the collisions, we show the necessity of redesigning the motion control strategy for mobile robots. Furthermore, impulsive control techniques are applied to redesign the motion control strategy to guarantee the task accomplishment for each mobile robot. Finally, an example is used to illustrate the redesigned motion control strategy.Comment: 8 pages, 5 figure

    Stabilization of Networked Control Systems With a Logic ZOH

    Full text link
    • …
    corecore